Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
JMIR Form Res ; 8: e53898, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739428

RESUMO

BACKGROUND: Improving health care in cities with a diverse, international population is crucial for ensuring health equity, particularly for foreigners facing challenges due to cultural and language barriers. This situation is especially relevant in China, a major destination for expatriates and travelers, where optimizing health care services and incorporating international standards in the public sector are vital. Achieving this involves understanding the operational details, cultural and linguistic nuances, and advancing medical digitalization. A strategic approach focusing on cultural competence and awareness of health care systems is essential for effectively navigating health care for foreigners and expatriates in China. OBJECTIVE: The aim of this study was to perform an in-depth analysis of the subjective and objective experiences of local and international patients in public hospitals in China to provide a basis for enhancing the medical experience of all patients. METHODS: A structured questionnaire was provided to patients at an international outpatient service of a top-tier university hospital in China. Qualitative analysis of the survey responses was performed to methodically categorize and analyze medical treatment, focusing on patient demand and satisfaction across four main category elements ("high demand, high satisfaction"; "high demand, low satisfaction"; "low demand, high satisfaction"; and "low demand, low satisfaction"), enabling a detailed cross-sectional analysis to identify areas for improvement. RESULTS: Elements falling under "high demand, high satisfaction" for both Chinese and international patients were primarily in the realms of medical quality and treatment processes. In contrast, elements identified as "high demand, low satisfaction" were significantly different between the two patient groups. CONCLUSIONS: The findings highlight the importance of systematic, objective research in advancing the quality of international health care services within China's leading academic medical centers. Key to this improvement is rigorous quality control involving both patients and providers. This study highlights the necessity of certifying such centers and emphasizes the role of digital platforms in disseminating information about medical services. This strategy is expected to cater to diverse patient needs, enhancing the overall patient experience. Furthermore, by developing comprehensive diagnosis and treatment services and highlighting the superior quality and costs associated with international health care, these efforts aim to foster a sense of belonging among international patients and increase the attractiveness of China's medical services for this demographic.

2.
Adv Healthc Mater ; : e2400849, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687974

RESUMO

Hydrogels containing chondrocytes have exhibited excellent potential in regenerating hyaline cartilage. However, chondrocytes are vulnerable to dedifferentiation during in vitro culture, leading to fibrosis and mechanical degradation of newly formed cartilage. It is proposed to modulate cartilage formation via the developed chondrocyte pericellular matrix (PCM) -like scaffolds for the first time, in which the S, M, and L-sized scaffolds are fabricated by femtosecond laser maskless optical projection lithography (FL-MOPL) of bovine serum albumin-glyceryl methacrylate hydrogel. Chondrocytes on the M PCM-like scaffold can maintain round morphology and synthesize extracellular matrix (ECM) to induce regeneration of hyaline cartilage microtissues by geometrical restriction. A series of M PCM-like scaffolds is fabricated with different stiffness and those with a high Young's modulus are more effective in maintaining the chondrocyte phenotype. The proposed PCM-like scaffolds are effective in modulating cartilage formation influenced by pore size, depth, and stiffness, which will pave the way for a better understanding of the geometric cues of mechanotransduction interactions in regulating cell fate and open up new avenues for tissue engineering.

3.
ACS Appl Bio Mater ; 7(4): 2594-2603, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38523342

RESUMO

Repairing articular cartilage damage is challenging due to its low regenerative capacity. In vitro, cartilage regeneration is a potential strategy for the functional reconstruction of cartilage defects. A hydrogel is an advanced material for mimicking the extracellular matrix (ECM) due to its hydrophilicity and biocompatibility, which is known as an ideal scaffold for cartilage regeneration. However, chondrocyte culture in vitro tends to dedifferentiate, leading to fibrosis and reduced mechanical properties of the newly formed cartilage tissue. Therefore, it is necessary to understand the mechanism of modulating the chondrocytes' morphology. In this study, we synthesize photo-cross-linkable bovine serum albumin-glycidyl methacrylate (BSA-GMA) with 65% methacrylation. The scaffolds are found to be suitable for chondrocyte growth, which are fabricated by homemade femtosecond laser maskless optical projection lithography (FL-MOPL). The large-area chondrocyte scaffolds have holes with interior angles of triangle (T), quadrilateral (Q), pentagon (P), hexagonal (H), and round (R). The FL-MOPL polymerization mechanism, swelling, degradation, and biocompatibility of the BSA-GMA hydrogel have been investigated. Furthermore, cytoskeleton and nucleus staining reveals that the R-scaffold with larger interior angle is more effective in maintaining chondrocyte morphology and preventing dedifferentiation. The scaffold's ability to maintain the chondrocytes' morphology improves as its shape matches that of the chondrocytes. These results suggest that the BSA-GMA scaffold is a suitable candidate for preventing chondrocyte differentiation and supporting cartilage tissue repair and regeneration. The proposed method for chondrocyte in vitro culture by developing biocompatible materials and flexible fabrication techniques would broaden the potential application of chondrocyte transplants as a viable treatment for cartilage-related diseases.


Assuntos
Cartilagem Articular , Condrócitos , Compostos de Epóxi , Metacrilatos , Condrócitos/metabolismo , Soroalbumina Bovina/farmacologia , Soroalbumina Bovina/metabolismo , Alicerces Teciduais , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Cartilagem Articular/metabolismo
4.
Eur Radiol ; 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38337069

RESUMO

OBJECTIVES: We aim to investigate whether cerebral small vessel disease (cSVD) imaging markers correlate with deep medullary vein (DMV) damage in small vessel occlusion acute ischemic stroke (SVO-AIS) patients. METHODS: The DMV was divided into six segments according to the regional anatomy. The total DMV score (0-18) was calculated based on segmental continuity and visibility. The damage of DMV was grouped according to the quartiles of the total DMV score. Neuroimaging biomarkers of cSVD including white matter hyperintensity (WMH), cerebral microbleed (CMB), perivascular space (PVS), and lacune were identified. The cSVD score were further analyzed. RESULTS: We included 229 SVO-AIS patients, the mean age was 63.7 ± 23.1 years, the median NIHSS score was 3 (IQR, 2-6). In the severe DMV burden group (the 4th quartile), the NIHSS score grade (6 (3-9)) was significantly higher than other groups (p < 0.01). The grade scores for basal ganglia PVS (BG-PVS) were positively correlated with the degree of DMV (R = 0.67, p < 0.01), rather than centrum semivole PVS (CS-PVS) (R = 0.17, p = 0.1). In multivariate analysis, high CMB burden (adjusted odds ratio [aOR], 25.38; 95% confidence interval [CI], 1.87-345.23) was associated with severe DMV scores. In addition, BG-PVS was related to severe DMV burden in a dose-dependent manner: when BG-PVS score was 3 and 4, the aORs of severe DMV burden were 18.5 and 12.19, respectively. CONCLUSION: The DMV impairment was associated with the severity of cSVD, which suggests that DMV burden may be used for risk stratification in SVO-AIS patients. CLINICAL RELEVANCE STATEMENT: The DMV damage score, based on the association between small vessel disease and the deep medullary veins impairment, is a potential new imaging biomarker for the prognosis of small vessel occlusion acute ischemic stroke, with clinical management implications. KEY POINTS: • The damage to the deep medullary vein may be one mechanism of cerebral small vessel disease. • Severe burden of the basal ganglia perivascular space and cerebral microbleed is closely associated with significant impairment to the deep medullary vein. • The deep medullary vein damage score may reflect a risk of added vascular damage in small vessel occlusion acute ischemic stroke patients.

5.
Biochem Biophys Res Commun ; 702: 149654, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38340657

RESUMO

Accumulating evidence underscores the pivotal role of envelope proteins in viral secondary envelopment. However, the intricate molecular mechanisms governing this phenomenon remain elusive. To shed light on these mechanisms, we investigated a Golgi-retained gD of EHV-1 (gDEHV-1), distinguishing it from its counterparts in Herpes Simplex Virus-1 (HSV-1) and Pseudorabies Virus (PRV). To unravel the specific sequences responsible for the Golgi retention phenotype, we employed a gene truncation and replacement strategy. The results suggested that Golgi retention signals in gDEHV-1 exhibiting a multi-domain character. The extracellular domain of gDEHV-1 was identified as an endoplasmic reticulum (ER)-resident domain, the transmembrane domain and cytoplasmic tail (TM-CT) of gDEHV-1 were integral in facilitating the protein's residence within the Golgi complex. Deletion or replacement of either of these dual domains consistently resulted in the mutant gDEHV-1 being retained in an ER-like structure. Moreover, (TM-CT)EHV-1 demonstrated a preference for binding to endomembranes, inducing the generation of a substantial number of vesicles, potentially originate from the Golgi complex or the ER-Golgi intermediate compartment. In conclusion, our findings provide insights into the intricate molecular mechanisms governing the Golgi retention of gDEHV-1, facilitating the comprehension of the processes underlying viral secondary envelopment.


Assuntos
Herpesvirus Equídeo 1 , Proteínas do Envelope Viral , Animais , Cavalos , Proteínas do Envelope Viral/química , Herpesvirus Equídeo 1/metabolismo , Complexo de Golgi/metabolismo , Retículo Endoplasmático/metabolismo , Domínios Proteicos
6.
J Magn Reson Imaging ; 59(5): 1620-1629, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37559435

RESUMO

BACKGROUND: Ultra-high field 7T MRI can provide excellent tissue contrast and anatomical details, but is often cost prohibitive, and is not widely accessible in clinical practice. PURPOSE: To generate synthetic 7T images from widely acquired 3T images with deep learning and to evaluate the feasibility of this approach for brain imaging. STUDY TYPE: Prospective. POPULATION: 33 healthy volunteers and 89 patients with brain diseases, divided into training, and evaluation datasets in the ratio 4:1. SEQUENCE AND FIELD STRENGTH: T1-weighted nonenhanced or contrast-enhanced magnetization-prepared rapid acquisition gradient-echo sequence at both 3T and 7T. ASSESSMENT: A generative adversarial network (SynGAN) was developed to produce synthetic 7T images from 3T images as input. SynGAN training and evaluation were performed separately for nonenhanced and contrast-enhanced paired acquisitions. Qualitative image quality of acquired 3T and 7T images and of synthesized 7T images was evaluated by three radiologists in terms of overall image quality, artifacts, sharpness, contrast, and visualization of vessel using 5-point Likert scales. STATISTICAL TESTS: Wilcoxon signed rank tests to compare synthetic 7T images with acquired 7T and 3T images and intraclass correlation coefficients to evaluate interobserver variability. P < 0.05 was considered significant. RESULTS: Of the 122 paired 3T and 7T MRI scans, 66 were acquired without contrast agent and 56 with contrast agent. The average time to generate synthetic images was ~11.4 msec per slice (2.95 sec per participant). The synthetic 7T images achieved significantly improved tissue contrast and sharpness in comparison to 3T images in both nonenhanced and contrast-enhanced subgroups. Meanwhile, there was no significant difference between acquired 7T and synthetic 7T images in terms of all the evaluation criteria for both nonenhanced and contrast-enhanced subgroups (P ≥ 0.180). DATA CONCLUSION: The deep learning model has potential to generate synthetic 7T images with similar image quality to acquired 7T images. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 1.


Assuntos
Meios de Contraste , Imageamento por Ressonância Magnética , Humanos , Estudos de Viabilidade , Estudos Prospectivos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem
7.
J Magn Reson Imaging ; 59(1): 340-349, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37183874

RESUMO

BACKGROUND: Global brain health has gained increasing attention recently. Imaging markers of brain frailty have been related to functional outcomes in previous studies on anterior circulation; however, little data are available on imaging markers and posterior circulation. PURPOSE: To investigate the impact of brain frailty on functional outcomes in patients with acute perforating artery infarction (PAI) of the posterior circulation. STUDY TYPE: Prospective. POPULATION: One hundred patients (60.78 ± 9.51 years, 72% men) with acute posterior circulation PAI (determined by diffusion-weighted magnetic resonance imaging (MRI)/time-of-flight MR angiography). FIELD STRENGTH/SEQUENCE: T1- and T2-weighted fast spin echo, T2-weighted fluid-attenuated inversion recovery, diffusion-weighted echo planar, gradient echo (susceptibility-weight imaging), and 3D time-of-flight MR angiography sequences at 3.0 T. ASSESSMENT: Periventricular and deep white matter hyperintensities (WMH), enlarged perivascular spaces (EPVS) in the basal ganglia and centrum semiovale area, lacunes, cerebral microbleeds (CMB), and total brain frailty score by calculating the above imaging characters were rated visually by three radiologists with 9, 10, and 11 years of experience and one neuroradiologist with 12. Infarction volume was assessed using baseline diffusion-weighted imaging (DWI) data obtained within 24 hours of symptom onset. A modified Rankin Scale (mRS) score >1 on day 90 defined an adverse functional outcome. Associations between the imaging markers of brain frailty and functional outcomes were assessed. STATISTICAL TESTS: Fisher's exact test, Mann-Whitney U test, and multivariable binary logistic regression. A P value <0.05 was considered statistically significant. RESULTS: Adverse prognoses (mRS > 1) were observed in 34 (34%) patients. Infarction volume, periventricular WMH, deep WMH, basal ganglia EPVS, CMB, and the brain frailty score were significantly associated with adverse functional outcomes. An increased brain frailty score was significantly associated with unfavorable mRS score on day 90 (odds ratio 1.773, 95% confidence interval 1.237-2.541). DATA CONCLUSION: Advanced MRI imaging markers of brain frailty, individually or combined as a total brain frailty score, were associated with worse functional outcomes after acute posterior circulation PAI. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 3.


Assuntos
Fragilidade , Masculino , Humanos , Feminino , Estudos Prospectivos , Fragilidade/diagnóstico por imagem , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Artérias , Infarto
8.
Radiology ; 309(2): e230681, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37962500

RESUMO

Background Iodinated contrast agents (ICAs), which are widely used in CT angiography (CTA), may cause adverse effects in humans, and their use is time-consuming and costly. Purpose To develop an ICA-free deep learning imaging model for synthesizing CTA-like images and to assess quantitative and qualitative image quality as well as the diagnostic accuracy of synthetic CTA (Syn-CTA) images. Materials and Methods A generative adversarial network (GAN)-based CTA imaging model was trained, validated, and tested on retrospectively collected pairs of noncontrast CT and CTA images of the neck and abdomen from January 2017 to June 2022, and further validated on an external data set. Syn-CTA image quality was evaluated using quantitative metrics. In addition, two senior radiologists scored the visual quality on a three-point scale (3 = good) and determined the vascular diagnosis. The validity of Syn-CTA images was evaluated by comparing the visual quality scores and diagnostic accuracy of aortic and carotid artery disease between Syn-CTA and real CTA scans. Results CT scans from 1749 patients (median age, 60 years [IQR, 50-68 years]; 1057 male patients) were included in the internal data set: 1137 for training, 400 for validation, and 212 for testing. The external validation set comprised CT scans from 42 patients (median age, 67 years [IQR, 59-74 years]; 37 male patients). Syn-CTA images had high similarity to real CTA images (normalized mean absolute error, 0.011 and 0.013 for internal and external test set, respectively; peak signal-to-noise ratio, 32.07 dB and 31.58 dB; structural similarity, 0.919 and 0.906). The visual quality of Syn-CTA and real CTA images was comparable (internal test set, P = .35; external validation set, P > .99). Syn-CTA showed reasonable to good diagnostic accuracy for vascular diseases (internal test set: accuracy = 94%, macro F1 score = 91%; external validation set: accuracy = 86%, macro F1 score = 83%). Conclusion A GAN-based model that synthesizes neck and abdominal CTA-like images without the use of ICAs shows promise in vascular diagnosis compared with real CTA images. Clinical trial registration no. NCT05471869 © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Zhang and Turkbey in this issue.


Assuntos
Aorta , Angiografia por Tomografia Computadorizada , Humanos , Masculino , Pessoa de Meia-Idade , Idoso , Estudos Retrospectivos , Tomografia Computadorizada por Raios X , Artérias Carótidas
9.
Brain Sci ; 13(11)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38002557

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a progressive neurodegenerative disorder with cognitive dysfunction and behavioral impairment. We aimed to use principal components factor analysis to explore the association between gait domains and AD under single and dual-task gait assessments. METHODS: A total of 41 AD participants and 41 healthy control (HC) participants were enrolled in our study. Gait parameters were measured using the JiBuEn® gait analysis system. The principal component method was used to conduct an orthogonal maximum variance rotation factor analysis of quantitative gait parameters. Multiple logistic regression was used to adjust for potential confounding or risk factors. RESULTS: Based on the factor analysis, three domains of gait performance were identified both in the free walk and counting backward assessments: "rhythm" domain, "pace" domain and "variability" domain. Compared with HC, we found that the pace factor was independently associated with AD in two gait assessments; the variability factor was independently associated with AD only in the counting backwards assessment; and a statistical difference still remained after adjusting for age, sex and education levels. CONCLUSIONS: Our findings indicate that gait domains may be used as an auxiliary diagnostic index for Alzheimer's disease.

10.
Sci Data ; 10(1): 574, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660106

RESUMO

Foundation models, often pre-trained with large-scale data, have achieved paramount success in jump-starting various vision and language applications. Recent advances further enable adapting foundation models in downstream tasks efficiently using only a few training samples, e.g., in-context learning. Yet, the application of such learning paradigms in medical image analysis remains scarce due to the shortage of publicly accessible data and benchmarks. In this paper, we aim at approaches adapting the foundation models for medical image classification and present a novel dataset and benchmark for the evaluation, i.e., examining the overall performance of accommodating the large-scale foundation models downstream on a set of diverse real-world clinical tasks. We collect five sets of medical imaging data from multiple institutes targeting a variety of real-world clinical tasks (22,349 images in total), i.e., thoracic diseases screening in X-rays, pathological lesion tissue screening, lesion detection in endoscopy images, neonatal jaundice evaluation, and diabetic retinopathy grading. Results of multiple baseline methods are demonstrated using the proposed dataset from both accuracy and cost-effective perspectives.


Assuntos
Benchmarking , Diagnóstico por Imagem , Humanos , Recém-Nascido , Retinopatia Diabética , Aprendizagem
11.
Small ; 19(49): e2303572, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37592111

RESUMO

Cross-scale micro-nano structures play an important role in semiconductors, MEMS, chemistry, and cell biology. Positive photoresist is widely used in lithography due to the advantages of high resolution and environmental friendliness. However, cross-scale micro-nano structures of positive photoresist are difficult to flexibly pattern, and the feature resolution is limited by the optical diffraction. Here, cross-scale patterned micro-nano structures are achieved using the positive photoresist based on the femtosecond laser maskless optical projection lithography (MOPL) technique. The dependence between exposure dose and groove width is comprehensively analyzed, and a feature size of 112 nm is obtained at 110 µW. Furthermore, large-area topography considering cell size is efficiently fabricated by the MOPL technique, which enables the regulation of cell behavior. The proposed protocol of achieving cross-scale structures with the exact size by MOPL of positive photoresist would provide new avenues for potential applications in nanoelectronics and tissue engineering.


Assuntos
Lasers , Impressão , Propriedades de Superfície , Tamanho Celular
12.
Open Med (Wars) ; 18(1): 20230698, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37415610

RESUMO

Dihydroartemisinin (DHA) has been found to inhibit the expression of von Willebrand factor (VWF), a marker of endothelial cell injury, but its mechanism in cerebral ischemia/reperfusion (I/R) injury remains obscure. In this study, I/R model was constructed through middle cerebral artery occlusion (MCAO) in rats, followed by DHA administration. The effect of DHA on rat cerebral I/R injury was investigated by 2,3,5-triphenyltetrazolium chloride staining, hematoxylin and eosin staining, TUNEL staining, and Western blot. Brain microvascular endothelial cells (BMVECs) isolated from newborn rats were exposed to oxygen-glucose deprivation/reoxygenation (OGD/R), and then treated with DHA. The results showed that MCAO treatment induced infarction, nerve cell apoptosis, and brain tissue impairment in rats, which was mitigated by DHA. OGD/R inhibited viability and accelerated apoptosis of BMVECs, which was alleviated by DHA. I/R procedures or OGD/R up-regulated expressions of VWF, ATG7, Beclin1, and LC3-II/LC3-I ratio, while down-regulating Occludin, Claudin-5, ZO-1, P62, SIRT1, and FOXO1 expressions in vivo and in vitro; however, these effects of I/R procedures or OGD/R were offset by DHA. VWF overexpression reversed the above effects of DHA on OGD/R-induced BMVECs. In summary, DHA ameliorates cerebral I/R injury in rats by reducing VWF level and activating autophagy-mediated SIRT1/FOXO1 signaling pathway.

13.
ACS Appl Mater Interfaces ; 15(22): 26472-26483, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37218620

RESUMO

Three-dimensional (3D) bioinspired hydrogels have played an important role in tissue engineering, owing to their advantage of excellent biocompatibility. Here, the two-photon polymerization (TPP) of a 3D hydrogel with high precision has been investigated, using the precursor with hyaluronic acid vinyl ester (HAVE) as the biocompatibility hydrogel monomer, 3,3'-((((1E,1'E)-(2-oxocyclopentane-1,3-diylidene) bis(methanylylidene)) bis(4,1-phenylene)) bis(methylazanediyl))dipropanoate as the water-soluble initiator, and dl-dithiothreitol (DTT) as the click-chemistry cross-linker. The TPP properties of the HAVE precursors have been comprehensively investigated by adjusting the solubility and the formulation of the photoresist. The feature line width of 22 nm has been obtained at a processing laser threshold of 3.67 mW, and the 3D hydrogel scaffold structures have been fabricated. Furthermore, the average value of Young's modulus is 94 kPa for the 3D hydrogel, and cell biocompatibility has been demonstrated. This study would provide high potential for achieving a 3D hydrogel scaffold with highly precise configuration in tissue engineering and biomedicine.

14.
Small ; 19(29): e2300311, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37026658

RESUMO

Cell aggregates as a 3D culture model can effectively mimic the physiological processes such as embryonic development, immune response, and tissue renewal in vivo. Researches show that the topography of biomaterials plays an important role in regulating cell proliferation, adhesion, and differentiation. It is of great significance to understand how cell aggregates respond to surface topography. Herein, microdisk array structures with the optimized size are used to investigate the wetting of cell aggregates. Cell aggregates exhibit complete wetting with distinct wetting velocities on the microdisk array structures of different diameters. The wetting velocity of cell aggregates reaches a maximum of 293 µm h-1 on microdisk structures with a diameter of 2 µm and is a minimum of 247 µm h-1 on microdisk structures of 20 µm diameter, which suggests that the cell-substrates adhesion energy on the latter is smaller. Actin stress fibers, focal adhesions (FAs), and cell morphology are analyzed to reveal the mechanisms of variation of wetting velocity. Furthermore, it is demonstrated that cell aggregates adopt climb and detour wetting modes on small and large-sized microdisk structures, respectively. This work reveals the response of cell aggregates to micro-scale topography, providing guidance for better understanding of tissue infiltration.


Assuntos
Materiais Biocompatíveis , Adesões Focais , Adesão Celular , Adesões Focais/metabolismo , Materiais Biocompatíveis/química , Molhabilidade , Actinas/metabolismo
15.
Adv Drug Deliv Rev ; 196: 114793, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36963569

RESUMO

Surgery and drug therapy are the two principal options for cancer treatment. However, their clinical benefits are hindered by the difficulty of accurate location of the tumors and timely monitoring of the treatment efficacy of drugs, respectively. Rapid development of imaging techniques provides promising tools to address these challenges. Compared with conventional imaging techniques such as magnetic resonance imaging and computed tomography etc., fluorescence imaging exhibits high spatial resolution, real-time imaging capability, and relatively low costs devices. The advancements in fluorescent probes further accelerate the implementation of fluorescence imaging in tumor diagnosis and treatment monitoring. In particular, the emergence of site-specifically activatable fluorescent probes fits the demands of tumor delineation and real-time feedback of the treatment efficacy. A variety of small molecule probes or nanoparticle-based probes have been developed and explored for the above-mentioned applications. This review will discuss recent advances in fluorescent probes with a special focus on activatable nanoprobes and highlight the potential implementation of activatable nanoprobes in fluorescence imaging-guided surgery as well as imaging-guided drug therapy.


Assuntos
Nanopartículas , Neoplasias , Humanos , Corantes Fluorescentes , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Imagem Óptica/métodos , Tomografia Computadorizada por Raios X
16.
Int J Biol Macromol ; 236: 123965, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36906202

RESUMO

Silver nanoclusters (AgNCs) have been widely applied in the field of biology, drug therapy and cell imaging in the last decade. In order to study the biosafety of AgNCs, GSH-AgNCs and DHLA-AgNCs were synthesized using glutathione (GSH) and dihydrolipoic acid (DHLA) as ligands, and their interactions with calf thymus DNA (ctDNA) from abstraction to visualization were studied. The results of spectroscopy, viscometry and molecular docking demonstrated that GSH-AgNCs mainly bound to ctDNA in a groove mode, while DHLA-AgNCs were both groove and intercalation binding. Fluorescence experiments suggested that the quenching mechanism of both AgNCs to the emission of ctDNA-probe were both in static mode, and thermodynamic parameters demonstrated that the main forces between GSH-AgNCs and ctDNA were hydrogen bonds and van der Waals forces, while hydrogen bonds and hydrophobic forces contributed to the binding of DHLA-AgNCs to ctDNA. The binding strength demonstrated that DHLA-AgNCs bound to ctDNA more strongly than that of GSH-AgNCs. The results of circular dichroism (CD) spectroscopy reflected small effects of both AgNCs on the structure of ctDNA. This study will support the theoretical foundation for the biosafety of AgNCs and have a guiding significance for the preparation and application of AgNCs.


Assuntos
DNA , Prata , Simulação de Acoplamento Molecular , Ligantes , DNA/química , Termodinâmica , Glutationa , Espectrometria de Fluorescência , Dicroísmo Circular
17.
Nano Lett ; 23(5): 1904-1913, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36801829

RESUMO

Cancer vaccines have received tremendous attention in cancer immunotherapy due to their capability to induce a tumor-specific immune response. However, their effectiveness is compromised by the insufficient spatiotemporal delivery of antigens and adjuvants in the subcellular level to induce a robust CD8+ T cell response. Herein, a cancer nanovaccine G5-pBA/OVA@Mn is prepared through multiple interactions of manganese ions (Mn2+), benzoic acid (BA)-modified fifth generation polyamidoamine (G5-PAMAM) dendrimer, and the model protein antigen ovalbumin (OVA). In the nanovaccine, Mn2+ not only exerts a structural function to assist OVA loading as well as its endosomal escape, but works as an adjuvant of stimulator of interferon genes (STING) pathway. These collaboratively facilitate the orchestrated codelivery of OVA antigen and Mn2+ into cell cytoplasm. Vaccination with G5-pBA/OVA@Mn not only shows a prophylactic effect, but also significantly inhibits growth against B16-OVA tumors, indicating its great potential for cancer immunotherapy.


Assuntos
Vacinas Anticâncer , Nanopartículas , Neoplasias , Humanos , Animais , Camundongos , Manganês , Antígenos , Adjuvantes Imunológicos/uso terapêutico , Neoplasias/terapia , Imunoterapia , Camundongos Endogâmicos C57BL , Nanopartículas/química , Células Dendríticas
18.
CNS Neurosci Ther ; 29(4): 1024-1033, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36650639

RESUMO

AIMS: Our purpose is to assess the role of cerebral small vessel disease (SVD) in prediction models in patients with different subtypes of acute ischemic stroke (AIS). METHODS: We enrolled 398 small-vessel occlusion (SVO) and 175 large artery atherosclerosis (LAA) AIS patients. Functional outcomes were assessed using the modified Rankin Scale (mRS) at 90 days. MRI was performed to assess white matter hyperintensity (WMH), perivascular space (PVS), lacune, and cerebral microbleed (CMB). Logistic regression (LR) and machine learning (ML) were used to develop predictive models to assess the influences of SVD on the prognosis. RESULTS: In the feature evaluation of SVO-AIS for different outcomes, the modified total SVD score (Gain: 0.38, 0.28) has the maximum weight, and periventricular WMH (Gain: 0.07, 0.09) was more important than deep WMH (Gain: 0.01, 0.01) in prognosis. In SVO-AIS, SVD performed better than regular clinical data, which is the opposite of LAA-AIS. Among all models, eXtreme gradient boosting (XGBoost) method with optimal index (OI) has the best performance to predict excellent outcome in SVO-AIS. [0.91 (0.84-0.97)]. CONCLUSIONS: Our results revealed that different SVD markers had distinct prognostic weights in AIS patients, and SVD burden alone may accurately predict the SVO-AIS patients' prognosis.


Assuntos
Aterosclerose , Doenças de Pequenos Vasos Cerebrais , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , AVC Isquêmico/diagnóstico por imagem , AVC Isquêmico/terapia , Doenças de Pequenos Vasos Cerebrais/complicações , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Efeitos Psicossociais da Doença , Aprendizado de Máquina , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/terapia
19.
Stroke Vasc Neurol ; 8(1): 69-76, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36219570

RESUMO

BACKGROUND AND PURPOSE: Individuals with intracranial artery occlusion have high rates of ischaemic events and recurrence. It has been challenging to identify patients who had high-risk stroke using a simple, valid and non-invasive screening approach. This study aimed to investigate whether fluid-attenuated inversion recovery (FLAIR) vascular hyperintensity (FVH), a specific imaging sign on the FLAIR sequence, could be a predictor of ischaemic events in a population with internal carotid artery (ICA) or middle cerebral artery (MCA) occlusion. METHODS: We retrospectively analysed 147 patients (mean 60.43±12.83 years) with 149 lesions, including 37 asymptomatic and 112 symptomatic cases of ICA or MCA occlusion. Symptomatic occlusion was considered if ischaemic events were present in the relevant territory within 90 days. FVH Alberta Stroke Program Early Computed Tomography Score (FVH-ASPECTS: 0-7, with 0 indicating absence of FVH and 7 suggesting prominent FVH) and collateral circulation grade were assessed for each participant. Multivariable logistic regression analysis was performed to detect independent markers associated with symptomatic status. RESULTS: A lower FVH-ASPECTS was associated with a more favourable collateral circulation grade (rho=-0.464, p<0.0001). The FVH-ASPECTS was significantly lower in the asymptomatic occlusion group than in the symptomatic occlusion group (p<0.0001). FVH-ASPECTS (Odd ratio, 2.973; 95% confidence interval, 1.849 to 4.781; p<0.0001) was independently associated with symptomatic status after adjustment for age, sex, lesion location and collateral circulation grade in the multivariate logistic regression. The area under the curve was 0.861 for the use of FVH-ASPECTS to identify symptomatic occlusion. CONCLUSIONS: The ability to discriminate symptomatic from asymptomatic occlusion suggests that FVH may be a predictor of stroke. As a simple imaging sign, FVH may serve as a surrogate for haemodynamic impairments and can be used to identify high-risk stroke cases early in ICA or MCA occlusion.


Assuntos
Infarto da Artéria Cerebral Média , Acidente Vascular Cerebral , Humanos , Infarto da Artéria Cerebral Média/patologia , Artéria Carótida Interna , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos
20.
CNS Neurosci Ther ; 29(2): 559-565, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36468424

RESUMO

AIM: This study aimed to evaluate the diagnostic value of ultrahigh-field magnetic resonance imaging (MRI) for brain tumors in clinical practice. METHODS: Thirty patients with brain tumors underwent 7- and 3-T MRI. The performance and diagnostic confidence of 7- and 3-T MRI in the visualization of tumor details such as internal structure and feeding artery were evaluated by radiologists. Contrast-enhanced region performance and tumor detail diagnostic confidence score (DCS) were calculated and compared between 7 and 3T using Wilcoxon rank sum test. RESULTS: In 19 with obvious enhancement and 11 cases without obvious enhancement, 7- and 3-T MRI showed similar performance. The tumors' internal structure and feeding artery were more clearly depicted by 7-T MRI (62.2% and 54.4%, respectively) than by 3-T MRI (2.2% and 6.7%, respectively). Furthermore, the mean DCSs of both internal structure and feeding artery were higher at 7T than at 3T (internal structure: 16.29 ± 9.67 vs. -5.79 ± 4.12, p = 0.028; feeding artery: 21.96 ± 6.93 vs. 4.46 ± 7.07, p = 0.028). The DCS was more significantly improved in the senior radiologist group. CONCLUSION: Better visualization of brain tumor details and higher tumor detail diagnostic confidence can be obtained with 7-T MRI.


Assuntos
Neoplasias Encefálicas , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA